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My research lies in the fields of discrete differential geometry, which features the discretization
of the theory of classical differential geometry. I am interested in the theoretical problems arising
in this field, and its potential applications in computer science. I mainly worked on two projects
during my graduate studies.

The first project investigated the convergence of the discrete unformization factors to the clas-
sical uniformization functions on closed surfaces. In [15], we proved that for a reasonable geodesic
triangulation T on a Riemannian surface (M, g), the discrete uniformization mapping of its induced
polyhedral metric approximates the uniformization mapping for (M, g) by an error in the order of
the maximal edge length of edges in T . In [9], we proved a similar result for surfaces of genus zero.

In the second project, we studied the space of geodesic triangulations of closed surfaces. In [10],
we proved the contractibility of the space of geodesic triangulations on a closed Riemannian surface
of negative curvature by generalizing Tutte’s embedding theorem. This solves a problem proposed
by Connelly et al. [1] in 1983, in the case of hyperbolic surfaces. In [11], we also proved that the
space of geodesic triangulations on flat tori is homotopically equivalent to the torus.

Now, I shall describe below the results in details and some problems I will work on in the near
future.

1 Convergence of discrete unformization factors on closed surfaces

The Poincaré-Koebe uniformization theorem states that any simply connected Riemannian sur-
face (M, g) is conformally equivalent to the unit sphere S2, the complex plane C, or the open unit
disk D. As a consequence, any smooth Riemannian metric g on a connected surface M is conformally
equivalent to a Riemannian metric g̃ of constant curvature 0 or ±1.

There are analogus uniformization results in the discrete setting. Given a closed surface S and
a finite non-empty set V ⊂ S, we call (S, V ) a marked surface. A triangulation of a marked surface
(S, V ) is a triangulation of S so that its vertex set is V. A piecewise flat (hyperbolic) polyhedral
metric on (S, V ) is flat (hyperbolic) cone metric on S whose cone points are in V . The discrete
curvature of a PL metric on (S, V ) is the function on V sending a vertex v ∈ V to 2π less the cone
angle at V . Every piecewise flat (hyperbolic) metric has an associated Delaunay triangulation which
has the property that the interior of the circumcircle of each triangle contains no other vertices in
the universal cover of S. For a geodesic triangulation T on a Riemannian surface (M, g) with vertex
set V (T ), it induces a piecewise polyhedral metric (T, l) on the marked surface (M,V (T )), where
l(e) is the geodesic length of an edge e measured in g. The discrete conformal class for piecewise
polyhedral metric, first defined by Gu et al. [8],[7], is as in the following.

Definition 1.1. Two two piecewise flat (or hyperbolic) polyhedral metrics d and d′ on a marked
surface (S, V ) are discrete conformal if there exists a sequence of sequence of flat (or hyperbolic)
polyhedral metrics d = d1, d2, · · · , dm = d′ and triangulations T1, · · · , Tm on (S, V ) such that

(a) Each Ti is Delaunay in di.
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(b) • If Ti = Ti+1, then for any edge jk ∈ E(Ti)

li+1(jk) = e
uj+uk

2 li(jk) for piecewise flat metric

sinh(li+1(jk)/2) = e
uj+uk

2 sinh(li(jk)/2) for piecewise hyperbolic metric

for some vertex function u : V → R. Here we use ui to express the value of u at vertex
i. We denote above relations by u ∗ l and u ∗h l respectively.

• If Ti 6= Ti+1, then (Ti, li) is isometric to (Ti+1, li+1) relative to (S, V ).

In [8], Gu-Luo-Sun-Wu proved that every piecewise flat polyhedral metric is discrete conformal
to a piecewise flat polyhedral metric with a given discrete curvature satisfying discrete Gauss-Bonnet
formula. For the special case of precribled curvature K∗ = 2πχ(S)/|V |, it will give us a constant
curvature PL metric, unique up to scaling, discrete to the given piecewise flat polyhedral metric.
In [7], Gu-Guo-Luo-Sun-Wu proved the similar discrete conformality result for the piecewise hyper-
bolic polyhedral metric. Rivin’s realization theorem for ideal hyperbolic polyhedra with prescribed
intrinsic metric [12] implies that for any given piecewise flat metric on the sphere, there exists a poly-
hedron inscribed in the sphere inducing a piecewise flat metric discrete conformal to the prescribed
piecewise flat metric.

Motivated by the Delaunay condition of a piecewise polyhedral metric, we define the ε−regularity
for a piecewise polyhedral metric denoted by (T, l).

Definition 1.2. A piecewise polyhedral metric (T, l) is called ε-regular if

(a) any inner angle θiijk ≥ ε, and

(b) for any adjacent triangles 4ijk and 4ijl, θkijk + θlijk ≤ π − ε,

where θiijk denotes the angle of triange 4ijk at vertex i.

In the work by Colin de Verdiére [2], a family of strictly acute triangulations on any Riemannain
surface with explicit bounds on angles are constructed, and maximal edge lengths of these acute
triangulations approach zero. This implies the existence of the ε-regular geodesic triangulations on
any Riemannian surface of arbitrary upper bound of edge length.

For simplicity, we will use (T, l)E and (T, l)H to denote the piecewise flat metric and hyperbolic
metric respectively. Our result for the piecewise hyperbolic metric on closed surfaces of genus g > 1
is stated as follows:

Theorem 1.3. [15](with Tianqi Wu) Suppose (M, g) is a closed orientable smooth Riemannian
surface with genus > 1 with the unique uniformization factor ū = ūM,g ∈ C∞(M) such that e2ūg is
hyperbolic. Then for any ε > 0, there exist δ = δ(M, g, ε) > 0 and C = C(M, g, ε) such that for any
ε−regular geodesic triangulation T of (M, g) with associated edge length |l| < δ, then

1. there exists a unique discrete conformal factor u ∈ RV (T ), such that (T, u ∗h l)H is globally
hyperbolic, and

2.
∣∣u− ū|V (T )

∣∣ ≤ C|l|∞.

The theorems for the piecewise flat metric on torus and the piecewise spherical metric on sphere
are smilar. For torus, we require the normalized area condition, i.e

Theorem 1.4. [15](with Tianqi Wu) Suppose (M, g) is a closed orientable smooth Riemannian
surface of genus 1 with the uniformization function ū = ūM,g ∈ C∞(M) is the unique uniformization
conformal factor such that e2ūg is flat and Area(M, e2ūg) = 1. Then for any ε > 0, there exists
δ = δ(M, g, ε) > 0 and C = C(M, g, ε) such that for any ε-regular geodesic triangulation T of (M, g)
with associated edge length |l| < δ, then
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1. there exists a unique discrete conformal factor u ∈ RV (T ), such that (T, u ∗ l)E is globally flat
and Area((T, u ∗ l)E) = 1, and

2.
∣∣u− ū|V (T )

∣∣ ≤ C|l|∞.

For the sphere case [9], we require that the uniformization mapping fixes three marked points.

Theorem 1.5. (with Yanwen Luo and Tianqi Wu) Suppose (M, g) is a closed smooth Riemannian
surface of genus zero with three marked points X,Y, Z, and ū ∈ C∞(M) is the uniformization factor
such that (M, e2ūg) is isometric to the unit sphere S2 ∼= Ĉ through a conformal map φ, and φ(Z) = 0,
φ(Y ) = 1, φ(X) = ∞. Then for any ε > 0, there exist δ = δ(M, g, ε) > 0 and C = C(M, g, ε) > 0
such that for any ε-regular triangulation T of (M, g) with the associated edge length |l| ≤ δ,

1. there exists a unique discrete conformal factor u ∈ RV (T ), such that (T, u∗ sin l
2)E is isometric

to an Euclidean polyhedral surface inscribed in the unit sphere through a map ψ such that
ψ(Z) = 0, ψ(Y ) = 1, and ψ(X) =∞;

2. |u− ū|V (T )| ≤ C|l|∞.

2 The space of geodesic triangulations on surfaces

In [11] and [10], we study the space of geodesic triangulations of a surface within a fixed homotopy
type. Such space can be viewed as a discrete analogue of the space of surface diffeomorphisms
homotopic to the identity. Smale [13] proved that the group of diffeomorphisms of a closed 2-disk
fixing boundary pointwisely is a contractible space. Earle and Eells [3] identified the homotopy types
of the topological groups of all orientation-preserving diffeomorphisms homotopic to the identity for
any closed surfaces. Our theorem 2.1 and 2.2 can be viewed as the discrete analogue for their results.

I will state the results for space of geodesic triangulations on Riemannian surface of non-positive
Gaussian curvature first. Assume (M, g) is a closed connected orientable smooth Riemannian surface
of non-positive Gaussian curvature. A topological triangulation T = (V,E, F ) of M is a marking
homeomorphism ψ from the polyhedron |T | of the simplicial complex T with sets of vertices V ,
edges E, and faces F to M . For convenience, we label the vertices as 1, 2, ..., n where n = |V |. The
edge in E determined by vertices i and j is denoted as ij.

Let T 1 be the 1-skeleton of T , and denote X = X(M,T, ψ) as the set of all geodesic triangulations
homotopic to ψ|T 1 . More specifically, X contains all the embeddings ϕ : T 1 →M satisfying that

(a) the restriction ϕij of ϕ on each edge ij is a geodesic parametrized by constant speed, and

(b) ϕ is homotopic to the restriction of ψ on T (1).

Then our result can be stated as follows.

Theorem 2.1. [10](with Yanwen Luo and Tianqi Wu) For a closed orientable Riemannian surface
(M, g) of negative curvature, X(M,T, ψ) is contractible. In particular, it is connected.

Now we move on to the case of flat tori. Let T2 = R2/Z2 = [0, 1]2/ ∼ be the flat torus constructed
by gluing the opposite sides of the unit square in R2.

Here we use the similar set up as in the case of Riemannian surface of non-positive curvature.
Let X = X(T2, T, ψ) replace X(M,T, ψ). The result for the case of flat tori is stated as follows.

Theorem 2.2 ([11]). (with Yanwen Luo and Tianqi Wu) Given a topological triangulation (T, ψ)
of flat tori T2, X(M,T, ψ) is homotopically equivalent to a torus.
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For any geodesic triangulation ϕ ∈ X we can always translate ϕ on T2 to make the image ϕ(v1) of
the first vertex v1 be at the (quotient of the) origin (0, 0). By this normalization, we can decompose
X as X(T2, T, ψ) = X0 × T2, where

X0 = X0(T2, T , ψ) = {ϕ ∈ X : ϕ(v1) = (0, 0)}.

Since there are affine transformations between any two flat tori, and an affine transformation always
preserves the geodesic triangulations, we can reduce theorem 2.2 to the following.

Theorem 2.3. Given a topological triangulation (T , ψ) of T2, the space X0 = X0(T2, T , ψ) is
contractible.

The idea for the proofs of theorem 2.1 and 2.3 are similar. I will sketch the proof of theorem 2.1
in the rest of this section.

Let X̃ = X̃(M,T, ψ) be the super space of X = X(M,T, ψ), containing all the continuous maps
ϕ : T 1 →M satisfying that

(1) The restriction ϕij of ϕ on the edge ij is a geodesic, and

(2) ϕ is homotopic to ψ|T 1 .

An element in X̃ is called as a geodesic mapping.
Denote ~E as the set of directed edges of triangulation T , and a directed edge starting from the

vertex i ending at the vertex j is denoted as (i, j). A vector w ∈ R ~E
>0 is called a weight of T . For

any weight w and a geodesic mapping ϕ ∈ X̃, we say ϕ is w-balanced if for any i ∈ V ,∑
j:ij∈E

wij~vij = 0,

where ~vij ∈ TqiM is defined with the exponential map exp : TM → M such that expqi(t~vij) =
ϕ ◦ eij(t) for t ∈ [0, 1].

The key ingredient for the proof of theorem 2.1 is to generalize Tutte’s embedding theorem [14]
to closed surfaces with negative curvature. Specifically, we prove the following two theorems.

Theorem 2.4. Assume the Riemannian metric g on M has strictly negative curvature. For any
weight w, there exists a unique ϕ ∈ X̃(M,T, ψ) that is w-balanced. Denote such ϕ as Φ(w), and

then Φ is a continuous map from R ~E
>0 to X̃.

Theorem 2.5. If ϕ ∈ X̃ is w-balanced for some weight w, then ϕ ∈ X.

Theorem 2.4 consists of three parts: the existence of w-balanced geodesic mapping for all w ∈
R ~E
>0, the uniqueness of w-balanced geodesic mapping, and the continuity of Φ. Theorem 2.5 implies

that a w-balanced geodesic mapping is a geodesic triangulation.
In the oppositie direction, we can construct a weight w for a geodesic embedding ϕ ∈ X, using

mean value coordinates by Floater [5]. Given ϕ ∈ X, mean value coordinates are defined to be

wij =
tan(αij/2) + tan(βij/2)

|~vij |
,

where |~vij | equals to the geodesic length of ϕ◦eij([0, 1]), and αij and βij are the two inner angles
in ϕ(T (1)) at the vertex ϕ(i) sharing the edge ϕ ◦ eij([0, 1]). See Figure 1. The construction of mean

value coordinates gives a continuous map Ψ : X → R ~E
>0. Furthermore, a geodesic embedding ϕ ∈ X

is Ψ(ϕ)-balanced by Floater’s mean value theorem [5]. Namely, we have a section Φ ◦ Ψ = idX .
Then theorem 2.1 is a direct consequence of theorems 2.4 and 2.5.
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Figure 1: Mean value cooridinate

3 Future work

3.1 Graph Morphing Problem

There is a natural relation between the connectivity of spaces of geodesic triangulations and the
graph morphing problem on surfaces. The connectivity implies that it is possible to construct a
path connecting any two geodesic triangulation. In other words, there exists a morphing between
two different geodesic embeddings of the 1-skeleton of the triangulation. A practical algorithm to
compute this morphing has potential applications in the field of computational geometry.

Floater and Gotsman [6] proposed a framework to compute a morphing between two given
geodesic triangulations of a convex polygon. They constructed a section σ : X(P, T ) → W (P, T ).
Then two geodesic triangulations are lifted to two weights in the space of weights, which is a convex
subset of the Euclidean space. Hence, the linear interpolation between the two weights projects to
a morphing between the two geodesic triangulations.

This framework has been applied to construct morphings on flat tori. As mentioned above, the
Tutte map can not be defined for all positive weights. Erickson and Lin [4] defined the space of
morphable weight in place of W (P, T ) so as to solve the graph morphing problem.

Since we showed that the Tutte map is well-defined for all the weights if the surface has negative
curvature. So we are interesting in the following question.

Question 1. Can we design an algorithm to construct morphings on a surface of negative curvature
?

Also, the proof of the existence and uniqueness theorem of a geodesic triangulation of a given
weight is not constructive. Hence, it is interesting to explore to following question.

Question 2. Can we design a variational method by minimizing the residue vectors as a discrete
version of the Dirichlet energy to compute the embedding corresponding to any weight ?

3.2 Homotopy type of space of geodesic triangulations of unit sphere

In [10] and [11], we have shown that for the flat tori and hyperbolic surfaces, the space X(M,T, ψ)
is homotopic equivalent to the group of its orientation-preserving isometries isotopic to the identity.
Specifically,

• X(T2, T, ψ) is homotopic equivalent to T2.

• X(Sg, T, ψ) is contractible.

where Sg is a closed surface of genus g > 1. The next question we want to work on is:

Question 3. Is X(S2, T, ψ) homotopic equivalent to SO(3)?
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